[Java] Excutors 에서 제공하는 ExecutorService
ITWeb/개발일반 2017. 11. 24. 15:36구글링 하기 귀찮아서 소소 코드에 있는 주석이랑 코드 가져 왔습니다.
/**
* Creates a thread pool that reuses a fixed number of threads
* operating off a shared unbounded queue. At any point, at most
* {@code nThreads} threads will be active processing tasks.
* If additional tasks are submitted when all threads are active,
* they will wait in the queue until a thread is available.
* If any thread terminates due to a failure during execution
* prior to shutdown, a new one will take its place if needed to
* execute subsequent tasks. The threads in the pool will exist
* until it is explicitly {@link ExecutorService#shutdown shutdown}.
*
* @param nThreads the number of threads in the pool
* @return the newly created thread pool
* @throws IllegalArgumentException if {@code nThreads <= 0}
*/
public static ExecutorService newFixedThreadPool(int nThreads) {
return new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>());
}
/**
* Creates a thread pool that maintains enough threads to support
* the given parallelism level, and may use multiple queues to
* reduce contention. The parallelism level corresponds to the
* maximum number of threads actively engaged in, or available to
* engage in, task processing. The actual number of threads may
* grow and shrink dynamically. A work-stealing pool makes no
* guarantees about the order in which submitted tasks are
* executed.
*
* @param parallelism the targeted parallelism level
* @return the newly created thread pool
* @throws IllegalArgumentException if {@code parallelism <= 0}
* @since 1.8
*/
public static ExecutorService newWorkStealingPool(int parallelism) {
return new ForkJoinPool
(parallelism,
ForkJoinPool.defaultForkJoinWorkerThreadFactory,
null, true);
}
/**
* Creates a work-stealing thread pool using all
* {@link Runtime#availableProcessors available processors}
* as its target parallelism level.
* @return the newly created thread pool
* @see #newWorkStealingPool(int)
* @since 1.8
*/
public static ExecutorService newWorkStealingPool() {
return new ForkJoinPool
(Runtime.getRuntime().availableProcessors(),
ForkJoinPool.defaultForkJoinWorkerThreadFactory,
null, true);
}
/**
* Creates a thread pool that reuses a fixed number of threads
* operating off a shared unbounded queue, using the provided
* ThreadFactory to create new threads when needed. At any point,
* at most {@code nThreads} threads will be active processing
* tasks. If additional tasks are submitted when all threads are
* active, they will wait in the queue until a thread is
* available. If any thread terminates due to a failure during
* execution prior to shutdown, a new one will take its place if
* needed to execute subsequent tasks. The threads in the pool will
* exist until it is explicitly {@link ExecutorService#shutdown
* shutdown}.
*
* @param nThreads the number of threads in the pool
* @param threadFactory the factory to use when creating new threads
* @return the newly created thread pool
* @throws NullPointerException if threadFactory is null
* @throws IllegalArgumentException if {@code nThreads <= 0}
*/
public static ExecutorService newFixedThreadPool(int nThreads, ThreadFactory threadFactory) {
return new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>(),
threadFactory);
}
/**
* Creates an Executor that uses a single worker thread operating
* off an unbounded queue. (Note however that if this single
* thread terminates due to a failure during execution prior to
* shutdown, a new one will take its place if needed to execute
* subsequent tasks.) Tasks are guaranteed to execute
* sequentially, and no more than one task will be active at any
* given time. Unlike the otherwise equivalent
* {@code newFixedThreadPool(1)} the returned executor is
* guaranteed not to be reconfigurable to use additional threads.
*
* @return the newly created single-threaded Executor
*/
public static ExecutorService newSingleThreadExecutor() {
return new FinalizableDelegatedExecutorService
(new ThreadPoolExecutor(1, 1,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>()));
}
/**
* Creates an Executor that uses a single worker thread operating
* off an unbounded queue, and uses the provided ThreadFactory to
* create a new thread when needed. Unlike the otherwise
* equivalent {@code newFixedThreadPool(1, threadFactory)} the
* returned executor is guaranteed not to be reconfigurable to use
* additional threads.
*
* @param threadFactory the factory to use when creating new
* threads
*
* @return the newly created single-threaded Executor
* @throws NullPointerException if threadFactory is null
*/
public static ExecutorService newSingleThreadExecutor(ThreadFactory threadFactory) {
return new FinalizableDelegatedExecutorService
(new ThreadPoolExecutor(1, 1,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>(),
threadFactory));
}
/**
* Creates a thread pool that creates new threads as needed, but
* will reuse previously constructed threads when they are
* available. These pools will typically improve the performance
* of programs that execute many short-lived asynchronous tasks.
* Calls to {@code execute} will reuse previously constructed
* threads if available. If no existing thread is available, a new
* thread will be created and added to the pool. Threads that have
* not been used for sixty seconds are terminated and removed from
* the cache. Thus, a pool that remains idle for long enough will
* not consume any resources. Note that pools with similar
* properties but different details (for example, timeout parameters)
* may be created using {@link ThreadPoolExecutor} constructors.
*
* @return the newly created thread pool
*/
public static ExecutorService newCachedThreadPool() {
return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
60L, TimeUnit.SECONDS,
new SynchronousQueue<Runnable>());
}
/**
* Creates a thread pool that creates new threads as needed, but
* will reuse previously constructed threads when they are
* available, and uses the provided
* ThreadFactory to create new threads when needed.
* @param threadFactory the factory to use when creating new threads
* @return the newly created thread pool
* @throws NullPointerException if threadFactory is null
*/
public static ExecutorService newCachedThreadPool(ThreadFactory threadFactory) {
return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
60L, TimeUnit.SECONDS,
new SynchronousQueue<Runnable>(),
threadFactory);
}
/**
* Creates a single-threaded executor that can schedule commands
* to run after a given delay, or to execute periodically.
* (Note however that if this single
* thread terminates due to a failure during execution prior to
* shutdown, a new one will take its place if needed to execute
* subsequent tasks.) Tasks are guaranteed to execute
* sequentially, and no more than one task will be active at any
* given time. Unlike the otherwise equivalent
* {@code newScheduledThreadPool(1)} the returned executor is
* guaranteed not to be reconfigurable to use additional threads.
* @return the newly created scheduled executor
*/
public static ScheduledExecutorService newSingleThreadScheduledExecutor() {
return new DelegatedScheduledExecutorService
(new ScheduledThreadPoolExecutor(1));
}
/**
* Creates a single-threaded executor that can schedule commands
* to run after a given delay, or to execute periodically. (Note
* however that if this single thread terminates due to a failure
* during execution prior to shutdown, a new one will take its
* place if needed to execute subsequent tasks.) Tasks are
* guaranteed to execute sequentially, and no more than one task
* will be active at any given time. Unlike the otherwise
* equivalent {@code newScheduledThreadPool(1, threadFactory)}
* the returned executor is guaranteed not to be reconfigurable to
* use additional threads.
* @param threadFactory the factory to use when creating new
* threads
* @return a newly created scheduled executor
* @throws NullPointerException if threadFactory is null
*/
public static ScheduledExecutorService newSingleThreadScheduledExecutor( ThreadFactory threadFactory) {
return new DelegatedScheduledExecutorService
(new ScheduledThreadPoolExecutor(1, threadFactory));
}
/**
* Creates a thread pool that can schedule commands to run after a
* given delay, or to execute periodically.
* @param corePoolSize the number of threads to keep in the pool,
* even if they are idle
* @return a newly created scheduled thread pool
* @throws IllegalArgumentException if {@code corePoolSize < 0}
*/
public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) {
return new ScheduledThreadPoolExecutor(corePoolSize);
}
/**
* Creates a thread pool that can schedule commands to run after a
* given delay, or to execute periodically.
* @param corePoolSize the number of threads to keep in the pool,
* even if they are idle
* @param threadFactory the factory to use when the executor
* creates a new thread
* @return a newly created scheduled thread pool
* @throws IllegalArgumentException if {@code corePoolSize < 0}
* @throws NullPointerException if threadFactory is null
*/
public static ScheduledExecutorService newScheduledThreadPool(
int corePoolSize, ThreadFactory threadFactory) {
return new ScheduledThreadPoolExecutor(corePoolSize, threadFactory);
}
/**
* Returns an object that delegates all defined {@link
* ExecutorService} methods to the given executor, but not any
* other methods that might otherwise be accessible using
* casts. This provides a way to safely "freeze" configuration and
* disallow tuning of a given concrete implementation.
* @param executor the underlying implementation
* @return an {@code ExecutorService} instance
* @throws NullPointerException if executor null
*/
public static ExecutorService unconfigurableExecutorService(ExecutorService executor) {
if (executor == null)
throw new NullPointerException();
return new DelegatedExecutorService(executor);
}
/**
* Returns an object that delegates all defined {@link
* ScheduledExecutorService} methods to the given executor, but
* not any other methods that might otherwise be accessible using
* casts. This provides a way to safely "freeze" configuration and
* disallow tuning of a given concrete implementation.
* @param executor the underlying implementation
* @return a {@code ScheduledExecutorService} instance
* @throws NullPointerException if executor null
*/
public static ScheduledExecutorService unconfigurableScheduledExecutorService( ScheduledExecutorService executor) {
if (executor == null)
throw new NullPointerException();
return new DelegatedScheduledExecutorService(executor);
}
- newFixedThreadPool
- 정해준 크기 만큼의 쓰레드를 생성하고 재사용 합니다. 명시적으로 shutdown() 하지 않는 한 쓰레드 중 하나가 종료 되면 다시 생성을 하게 됩니다.
- newWorkStealingPool
- 작업 순서에 대한 보장은 하지 않습니다, parallelism 수준에 따라 쓰레드를 충분히 지원 하지만 다중큐를 사용하는 것이 좋습니다. 쓰레드의 크기는 동적으로 늘었다 줄었다 합니다.
- newSingleThreadExecutor
- 쓰레드를 하나만 생성해서 사용합니다. 만약 종료 되면 다시 쓰레드가 생성이 되며 작업에 대한 연속성을 보장해 줍니다.
- newCachedThreadPool
- 필요한 만큼 쓰레드를 생성 하게 됩니다. 하지만 60초 동안 사용되지 않으면 풀에서 제거 됩니다.
- 60초가 기본 설정 값 이며, 생성된 쓰레드는 재사용 됩니다.
- newSingleThreadScheduledExecutor
- 스케쥴링이 가능한 하나의 쓰레드를 생성 합니다. 스케쥴 기능을 빼고는 newSingleThreadExecutor 와 비슷 하다고 보시면 됩니다.
- newScheduledThreadPool
- 스케쥴링이 가능한 쓰레드 풀을 생성 합니다. 쓰레드가 idle 상태에 있더라도 종료 되거나 소멸 되지 않고 풀에 그대로 남아 있습니다.