'multi match query'에 해당되는 글 1건

  1. 2015.12.22 [Elasticsearch - The Definitive Guide] Single Query String

[Elasticsearch - The Definitive Guide] Single Query String

Elastic/TheDefinitiveGuide 2015. 12. 22. 11:13

여러 필드에 질의 할 때 문서에 대한 score 계산시 가장 relevant 한 결과를 만들어 내기 위해 사용하는 기법이라고 보면 될 것 같습니다.

하지만 기능적으로 어떤의미를 갖는지를 알아야 응용이 가능 하겠습니다.


원문링크)


원문 Snippet)

Best fields
When searching for words that represent a concept, such as “brown fox,” the words mean more together than they do individually. Fields like the title and body, while related, can be considered to be in competition with each other. Documents should have as many words as possible in the same field, and the score should come from the best-matching field.
Most fields

A common technique for fine-tuning relevance is to index the same data into multiple fields, each with its own analysis chain.

The main field may contain words in their stemmed form, synonyms, and words stripped of theirdiacritics, or accents. It is used to match as many documents as possible.

The same text could then be indexed in other fields to provide more-precise matching. One field may contain the unstemmed version, another the original word with accents, and a third might use shinglesto provide information about word proximity.

These other fields act as signals to increase the relevance score of each matching document. The more fields that match, the better.

Cross fields

For some entities, the identifying information is spread across multiple fields, each of which contains just a part of the whole:

  • Person: first_name and last_name
  • Book: title, author, and description
  • Address: street, city, country, and postcode


가볍게 요약하면 이렇습니다.

- best fields 는 가장 적합한 field 의 score 를 리턴 합니다.

- most fields 는 field 들의 score 를 더한 값을 리턴 합니다.

- cross fields 는 field 들을 섞어서 score 를 계산 하여 리턴 합니다. (field 들 중 최소의 idf 값을 사용 합니다.)


: