'Mahout'에 해당되는 글 2건

  1. 2017.02.01 [Apache Mahout] GenericDataModel 예제코드.
  2. 2017.01.24 [검색추천] Apache mahout + Elastic Stack 을 이용한 기본 추천

[Apache Mahout] GenericDataModel 예제코드.

ITWeb/개발일반 2017.02.01 11:52

Apache Mahout 의 DataModel 구현체는 아래 프로젝트의 패키지에 포함이 되어 있습니다.


[Project]

- mahout-mr 


[Package]

- org.apache.mahout.cf.taste.impl.model.*


[Example]

FastByIDMap<PreferenceArray> result = new FastByIDMap<PreferenceArray>();
List<Preference> prefsList = Lists.newArrayList();
prefsList.add(new GenericPreference(1645390, 123456, 0.4));
result.put(1645390, new GenericUserPreferenceArray(prefsList));

return new ExampleRecommender(new GenericDataModel(result));

public GenericPreference(long userID, long itemID, float value)


코드 자체가 너무 쉬워서 이만 줄입니다.


저작자 표시 비영리 변경 금지
신고
크리에이티브 커먼즈 라이선스
Creative Commons License
Trackback 0 : Comment 0

[검색추천] Apache mahout + Elastic Stack 을 이용한 기본 추천

Elastic/Elasticsearch 2017.01.24 11:47

Elastic Stack 과 Apache mahout 을 이용한 추천 데이터 생성을 다뤄 볼까 합니다.

기본적으로는 Elastic Stack 만 가지고도 cohort 분석을 통해 추천 데이터 마트 구성이 가능 한데요.

추천 데이터에 대한 품질을 좀 더 좋게 하기 위해 Apache mahout 을 활용해 보도록 하겠습니다.


여기서 다루는 내용은 누구나 쉽게 접근 할 수 있도록 Hello World! 수준만 기술 합니다.


[Elastic Stack]

https://www.elastic.co/products


[Apache mahout]

https://mahout.apache.org/


위 두 솔루션은 모두 오픈소스 이며 예제 코드가 해당 소스에 잘 만들어져 있어 누구나 쉽게 활용이 가능합니다.


Step 1)

Elasticsearch + Logstash + Kibana 를 이용해 로그를 수집하고 추천 할 raw data 를 생성 합니다.


User item click log -> Logstash collect -> Elasticsearch store -> Kibana visualize -> CSV download


여기서 수집한 데이터 중 추출 데이터는 user id + item id + click count 입니다.

아래는 Kibana QueryDSL 예제 입니다.

{

  "size": 0,

  "query": {

    "filtered": {

      "query": {

        "query_string": {

          "query": "cp:CLK AND id:[0 TO *]",

          "analyze_wildcard": true

        }

      },

      "filter": {

        "bool": {

          "must": [

            {

              "range": {

                "time": {

                  "gte": 1485010800000,

                  "lte": 1485097199999,

                  "format": "epoch_millis"

                }

              }

            }

          ],

          "must_not": []

        }

      }

    }

  },

  "aggs": {

    "2": {

      "terms": {

        "field": "user_id",

        "size": 30000,

        "order": {

          "_count": "desc"

        }

      },

      "aggs": {

        "3": {

          "terms": {

            "field": "item_id",

            "size": 10,

            "order": {

              "_count": "desc"

            }

          }

        }

      }

    }

  }

}


Step 2)

Apache mahout 에서 사용할 recommender 는 UserBasedRecommender 입니다.

샘플 코드에도 나와 있지만 dataset.csv 파일은 아래와 같은 형식 입니다.

- Creating a User-Based Recommender in 5 minutes


1,10,1.0
1,11,2.0
1,12,5.0
1,13,5.0

형식) userId,itemId,ratingValue


Step1 에서 위와 같은 형식을 맞추기 위해 user_id, item_id, click_count 를 생성 하였습니다.

이 데이터를 기반으로 UserBasedRecommender 를 돌려 보도록 하겠습니다.


Step 3)

아래 보시면 샘플 코드가 잘 나와 있습니다.

https://github.com/apache/mahout/tree/master/examples/src/main/java/org/apache/mahout


Main class 하나 만드셔서 Step2 에 나와 있는 코드로 돌려 보시면 됩니다.

저는 UserBasedRecommender 를 implements 해서 별도로 구현했습니다.

이건 누구나 쉽게 하실 수 있는 부분이기 때문에 examples 에 나와 있는 BookCrossingRecommender 클래스등을 참고 하시면 됩니다.


UserBasedRecommenderRunner runner = new UserBasedRecommenderRunner();

Recommender recommender = runner.buildRecommender();


// 710039번 유저에 대한 추천 아이템 3개

List<RecommendedItem> recommendations = recommender.recommend(710039, 3);


for (RecommendedItem recommendation : recommendations) {

    LOG.debug("추천 아이템 : {}", recommendation);

}


[실행 로그]

11:39:31.527 [main] INFO  o.a.m.c.t.i.model.file.FileDataModel - Creating FileDataModel for file /git/prototype/data/user-to-item.csv

11:39:31.626 [main] INFO  o.a.m.c.t.i.model.file.FileDataModel - Reading file info...

11:39:31.765 [main] INFO  o.a.m.c.t.i.model.file.FileDataModel - Read lines: 63675

11:39:31.896 [main] INFO  o.a.m.c.t.i.model.GenericDataModel - Processed 10000 users

11:39:31.911 [main] INFO  o.a.m.c.t.i.model.GenericDataModel - Processed 19124 users

11:39:31.949 [main] DEBUG o.a.m.c.t.i.r.GenericUserBasedRecommender - Recommending items for user ID '710039'

11:39:31.965 [main] DEBUG o.a.m.c.t.i.r.GenericUserBasedRecommender - Recommendations are: [RecommendedItem[item:35222, value:4.0], RecommendedItem[item:12260, value:4.0], RecommendedItem[item:12223, value:1.5]]

11:39:31.966 [main] DEBUG o.h.p.mahout.meme.MemeProductRunner - 추천 아이템 : RecommendedItem[item:35222, value:4.0]

11:39:31.966 [main] DEBUG o.h.p.mahout.meme.MemeProductRunner - 추천 아이템 : RecommendedItem[item:12260, value:4.0]

11:39:31.967 [main] DEBUG o.h.p.mahout.meme.MemeProductRunner - 추천 아이템 : RecommendedItem[item:12223, value:1.5]


[Recommender]

similarity = new PearsonCorrelationSimilarity(dataModel);


// 이웃한 N명의 사용자 데이터로 추천 데이터 생성

// UserNeighborhood neighborhood = new NearestNUserNeighborhood(2, similarity, dataModel, 0.2);


// 특정 값이나 임계치를 넘는 모든 사용자의 데이터로 추천 데이터 생성, samplingrate : user sampling rate 10%

// UserNeighborhood neighborhood = new ThresholdUserNeighborhood(0.1, similarity, dataModel, 0.1);


UserNeighborhood neighborhood = new ThresholdUserNeighborhood(0.2, similarity, dataModel, 1.0);

recommender = new GenericUserBasedRecommender(dataModel, neighborhood, similarity);


- 데이터 크기가 너무 작아 ThresholdUserNeighborhood 를 이용하였습니다.


이와 같이 검색 클릭 로그를 기반으로 CF를 돌려 추천 데이터를 만드는 아주 간단한 방법을 알아봤습니다.

만든 추천 데이터에 대한 평가도 가능 합니다.

역시 examples 에 xxxxxxEvaluator 클래스들을 참고하셔서 구현해 보시면 됩니다.


저작자 표시 비영리 변경 금지
신고
크리에이티브 커먼즈 라이선스
Creative Commons License
Trackback 0 : Comment 0

티스토리 툴바